Senin, 09 Desember 2013

Ujian Tengah Semester KIMIA BAHAN ALAM

Nama               :Atikatul Mutmainah
Nim                 :A1C111065
Matakuliah      :Kimia Bahan Alam
Kredit              :2SKS
Dose
n              :Dr. Syamsurizal, M.Si
Hari/Tanggal   :Selasa,03Desember2013
Waktu 10.00 s/d 10.00 pagi ( tanggal 10 Desember 2013 )

Soal :
1.      Cari diartikel tentang tehnik identifikasi dari suatu senyawa terpenoid? Mengapa dengan reagen tersebut tidak cocok untuk mengidentifikasi golongan lain seperti flavonoid, alkaloid atau fenolik lain? Nama artikel, alamat web, dasar artikel
2.      Dengan cara yang sama cari tehnik isolasi tentang senyawa terpenoid, jelaskan dasar ilmiah penggunaan pelarut dan tehnik-tehnik isolasi dan purifikasi. Misalnya dengan pelarut etanol dengan melakukan kromatografi
3.      Pelajari cara biosintesis suatu terpenoid. Identifikasilah sekurang-kurangnya 5 jenis reaksi organik yang terkait dengan biosintesis tersebut dan jelaskan reaksinya?
4.      Salah satu bioaktivitas terpenoid berhubungan dengan hormone laki-laki dan perempuan, jelaskan gugus fungsi yang mungkin berperan sebagai hormone baik pada testosterone dan estrogen. Misalnya pada hormone testosterone itu yang paling aktif apa??

Penyelesaian:
1.      Jawaban nomor 1 :
Contoh identifikasi senyawa terpenoid pada daun pepaya:
Bahan
Biji pepaya yang digunakan dalam penelitian ini adalah biji pepaya yang berwarna putih yang diambil di daerah Kupang-NTT. Bahan kimia yang digunakan seperti metanol (teknis dan p.a), kloroform p.a, n-heksana (p.a dan teknis), asam sulfat pekat, asam asetat anhidrat, kalium bromida (KBr), silika gel GF254, silika gel 60, etilasetat p.a, eter p.a, etanol (p.a dan teknis), dan akuades.
Peralatan
Peralatan yang digunakan adalah berbagai alat gelas, seperangkat alat kromatografi (KLT dan kolom), lampu ulta violet 254 nm dan 366 nm, spektrofotometer ultra violet -tampak, serta spektrofotometer inframerah.
Cara Kerja
Biji pepaya yang berwarna putih dicelupkan ke dalam etanol panas kemudian dikeringkan dan dihaluskan. Sebanyak 500 g serbuk kering biji pepaya diekstraksi dengan cara maserasi menggunakan pelarut n-heksana. Ekstrak yang didapat diuapkan dengan rotary vacuum evaporator sehingga diperoleh ekstrak kental n-heksana. Ekstrak kental tersebut diuji fitokimia dengan pereaksi Liebermann-Burchard untuk menentukan ada tidaknya triterpenoid. Ekstrak kental positif triterpenoid dipisahkan dengan kromatografi kolom. Sebelum dilakukan pemisahan dengan kromatografi kolom, terlebih dahulu dilakukan pemilihan eluen dengan teknik KLT. Hasil pemisahan kromatografi kolom (silika gel 60, n-heksana : eter : etilasetat : etanol (2:3:3:2)) yang sama digabungkan dan dikelompokkan menjadi kelompok fraksi. Masing-masing kelompok fraksi tersebut diuji untuk triterpenoid. Fraksi yang positif mengandung triterpenoid dengan noda tunggal dilanjutkan dengan uji kemurnian secara KLT dengan beberapa campuran eluen. Bila tetap menghasilkan satu noda maka fraksi tersebut dapat dikatakan sebagai isolat relatif murni secara KLT. Isolat relatif murni ini kemudian dianalisis dengan Spektrofotometer Ultra violet­tampak dan Inframerah.
HASIL DAN PEMBAHASAN
Isolat yang diperoleh sebanyak 50 mg dari sekitar 500 g sampel serbuk kering biji papaya. Pemisahan 21,66 g ekstrak kental n­heksana menggunakan kromatografi kolom (silika gel 60, n-heksana : eter : etilasetat : etanol (2:3:3:2)) menghasilkan 127 eluat, yang kemudian difraksinasi denagn KLT menghasilkan 3 kelompok fraksi. Ketiga kelompok fraksi tersebut diuji untuk triterpenoid dengan pereaksi Liebermann-Burchard. Hasil uji triterpenoid ketiga kelompok fraksi tersebut dipaparkan pada Tabel 1.
Tabel 1. Hasil uji triterpenoid
Fraksi
Berat (g)

Pereaksi LB
F1 (5-23) F2 (24-65) F3 (66-127)
0,10 1,22 0,05

Coklat Merah ungu Merah ungu




Fraksi yang dilanjutkan untuk analisis lebih lanjut adalah fraksi F3. Uji kemurnian dengan analisis KLT menggunakan beberapa fase gerak menghasilkan isolat relatif murni dengan satu noda pada berbagai polaritas eluen yang digunakan. Hasil analisis dengan spektrofotometri inframerah menunjukkan adanya serapan tajam pada daerah bilangan gelombang 2923,8 cm-1 dan 2852,2 cm-1 yang diduga serapan dari gugus C-H alifatik stretching. Dugaan ini diperkuat oleh adanya serapan pada daerah bilangan gelombang 1464,4 cm-1 dan 1206,5 cm-1 yang merupakan serapan dari -CH2 dan –CH3 bending. Pita serapan yang tajam pada daerah bilangan gelombang 1710,4 cm-1 dengan intensitas kuat mengidentifikasikan gugus karbonil (C=O) (Sastrohamidjojo, 1985). Identifikasi dengan spektrofotometri ultra violet -tampak menunjukkan serapan maksimum pada panjang gelombang 228,5 nm yang kemungkinan diakibatkan oleh terjadinya transisi elektrón n-0 * dari kromofor C=O. Hal ini didukung hasil analisis spektrofotometri inframerah yang menunjukkan isolat mempunyai gugus fungsi C=O pada panjang gelombang 1710,4 nm. Serapan ultra violet yang landai pada panjang gelombang 287,7 nm kemungkinan diakibatkan oleh terjadinya transisi elektronik n -J * dari ikatan rangkap C=O (Sastrohamidjojo, 1985).
Hasil uji aktivitas antibakteri menunjukkan bahwa isolat triterpenoid (F3) dengan konsentrasi 1000 ppm memiliki potensi menghambat pertumbuhan bakteri dengan diameter daerah hambat sebesar 10 mm untuk bakteri E. coli dan 7 mm untuk bakteri S. aureus.
Uji identifikasi dapat dilakukan dengan menggunakan pereaksi Lieberman-Burchard. Perekasi Lebermann-Burchard merupakan campuran antara asam setat anhidrat dan asam sulfat pekat. Alasan digunakannya asam asetat anhidrat adalah untuk membentuk turunan asetil dari steroid yang akan membentuk turunan asetil di dalam kloroform. Alasan penggunaan kloroform adalah karena golongan senyawa ini paling larut baik didalam pelarut ini dan yang paling prinsipil adalah tidak mengandung molekul air. Jika dalam larutan uji terdapat molekul air maka asam asetat anhidrat akan berubah menjadi asam asetat sebelum reaksi berjalan dan turunan asetil tidak akan terbentuk.
Alasan mengapa senyawa lain tidak bisa memakai pereaksi ini karena prisip kerja dari leberman buchard sangat spesifik dia akan berubah warna jika di ujikan hanya pada senyawa- senyawa terpenoid dan turunannya, seperti yang sudah disebutkan pada tulisan dia atas bahwa Lebermann-Burchard merupakan campuran antara asam setat anhidrat dan asam sulfat pekat jika direaksikan dengan senyawa terpenoid ataupun turunannya dia akan mengalami perubahan warna, seperti contoh di atas.
2.      Jawaban nomor 2 :
Ekstraksi senyawa terpenoid dilakukan
dengan dua cara yaitu :
1.      Sokletasi
Seberat 1000 g serbuk kering herba meniran disokletasi dengan 5 L pelarut n –
heksana. Ekstrak n-heksana dipekatkan lalu disabunkan dalam 50 mL KOH 10%. Ekstrak n-heksana dikentalkan lalu diuji fitokimia dan uji aktivitas antibakteri.
2.      Maserasi
Seberat 1000 g serbuk kering herba meniran dimaserasi menggunakan pelarut metanol. Ekstrak metanol dipekatkan lalu dihidrolisis dalam 100 mL HCl 4 M. Hasil hidrolisis diekstraksi dengan 5 x 50 mL n – heksana. Ekstrak n-heksana dipekatkan lalu disabunkan dalam 10 mL KOH 10%. Ekstrak n-heksana dikentalkan lalu diuji fitokimia dan uji aktivitas antibakteri.

Uji aktivitas antibakteri
Ekstrak n-heksanaa diuji aktivitasnya terhadap bakteri Eschericia coli dan Staphyloccocus aureus dengan tahap – tahap sebagai berikut :
1. Diambil sebanyak satu koloni biakan bakteri Eschericia coli dengan menggunkan jarum ose yang dilakukan secara aseptis.
2. Dimasukkan ke dalam tabung yang berisi 2 mL Mueller-Hinton broth kemudian diinkubasi selama 24 jam pada suhu 35ºC .
3. Suspensi bakteri homogen yang telah diinkubasi siap dioleskan pada permukaan media Mueller-Hinton agar, secara merata dengan menggunakan lidi kapas yang steril.
4. Kemudian ditempelkan disk yang berisi sampel, standar tetrasiklin serta pelarutnya (n-heksana) yang digunakan sebagai kontrol.
5. Lalu diinkubasi selama 24 jam pada suhu 35ºC .
6. Dilakukan pengukuran daya hambat zat terhadap bakteri.
7. Untuk biakan bakteri Staphyloccocus aureus dilakukan dengan cara yang sama seperti biakan bakteri Eschericia coli, namun suhunya berbeda yaitu pada suhu 37ºC

Ekstrak yang positif terpenoid dan paling aktif antibakteri dipisahkan mengunakan kromatografi kolom dengan fase diam silika gel 60 dan fase gerak kloroform : metanol (3 : 7). Fraksi-fraksi yang diperoleh dari kromatografi kolom diuji fitokimia dan uji aktivitas antibakteri. Fraksi yang positif terpenoid dan
paling aktif antibakteri dilanjutkan ke tahap pemurnian menggunakan kromatograi lapis tipis. Isolat yang relatif murni selanjutnya diidentifikasi menggunakan kromatogafi gas – spektroskopi massa.

HASIL DAN PEMBAHASAN
Hasil ekstraksi dengan cara sokletasi dan maserasi menunjukkan bahwa ekstrak n-heksana pada kedua cara tersebut positif mengandung senyawa terpenoid. Hal ini dibuktikan dengan terbentuknya warna ungu setelah ekstrak nheksana direaksikan dengan Pereaksi Lieberman Burchard. Hasil uji aktivitas antibakteri terhadap ekstrak n-heksana hasil sokletasi memberikan daya hambat yang lebih besar dibandingkan ekstrak n-heksana hasil maserasi. Terhadap ekstrak n-heksana hasil sokletasi dipisahkan mengunakan kromatografi kolom menghasilkan tiga buah fraksi yang dipaparkan pada Tabel 1.
Hasil uji fitokimia menunjukkan bahwa fraksi A dan fraksi C positif terpenoid yaitu memberikan warna merah muda (positif diterpenoid) pada fraksi A dan warna ungu muda (positif triterpenoid) pada fraksi C setelah direaksikan dengan pereksi Lieberman-Burchard. Hasil ini dipaparkan pada Tabel 2.
Alasannya mengapa memakai n-heksana karena jika senyawa terpenoid bereaksi dengan n-heksana dia akan membentuk benzil dan senyawa pengganggu akan terputus, dan mengapa memakai kromatografi karena dengan memakai kromatografi senyawa alkaloid secara murni bisa didapatkan, kemungkinan senyawa penggangu sangat kecil.
3.      Jawaban nomor 3 :
BIOSINTESIS SENYAWA TERPENOID
Terpenoid merupakan bentuk senyawa dengan struktur yang besar dalam produk alami yang diturunkan dan unit isoprene (C5)yang bergandengan dalam model kepala ke ekor, sedangkan unit isoprene diturunkan dari metabolism asam asetat oleh jalur asam mevalonat (MVA). Adapun reaaksinya adalah sebagai berikut: 
Secara umum biosintesa dari terpenoid dengan terjadinya 3 reaksi dasar, yaitu:
1.      Pembentukan isoprene aktif berasal dari asam asetat melalui asam mevalonat.
2.      Penggabungan kepala dan ekor dua unit isoprene akan membentuk mono-, seskui-, di-. sester-, dan poli-terpenoid.
3.      Penggabungan ekor dan ekor dari unit C-15 atau C-20 menghasilkan triterpenoid dan steroid.
Mekanisme dari tahap-tahap reaksi biosintesis terpenoid adalah asam asetat setelah diaktifkan oleh koenzim A melakukan kondensasi jenis Claisen menghasilkan asam asetoasetat.
            Senyawa yang dihasilkan ini dengan asetil koenzim A melakukan kondensasi jenis aldol menghasilkan rantai karbon bercabang sebagaimana ditemukan pada asam mevalinat, reaksi-reaksi berikutnya adalah fosforialsi, eliminasi asam fosfat dan dekarboksilasimenghasilkan  isopentenil (IPP) yang selanjutnya berisomerisasi menjadi dimetil alil piropospat (DMAPP) oleh enzim isomeriasi. IPP sebagai unti isoprene aktif bergabung secara kepala ke ekor dengan DMAPP dan penggabungan ini merupakan langkah pertama dari polimerisasi isoprene untuk menghasilkan terpenoid.
            Penggabungan ini terjadi karena serangan electron dari ikatan rangkap IPP terhadap atom karbon dari DMAPP yang kekurangan electron diikuti oleh penyingkiran ion pirofosfat yang menghasilkan geranil.pirofosfat (GPP) yaitu senyawa antara bagi semua senyawa monoterpenoid.
            Penggabungan selanjutnya antara satu unti IPP dan GPP dengan menaisme yang sama menghasilkan Farnesil pirofosfat (FPP) yang merupakan senyawa antara bagi semua senyawa seskuiterpenoid. Senyawa diterpenoid diturunkan dari Geranil-Geranil Pirofosfat (GGPP) yang berasal dari kondensasi antara satu unti IPP dan GPP dengan mekanisme yang sama. Mekanisme biosintesa senyawa terpenoid adalah sebagai berikut: 

4.      Jawaban nomor 4 :

 Semua hormon-hormon steroid pada dasarnya memiliki struktur yang sama, hanya saja mempunyai sedikit perbedaan kimiawi yang mengakibatkan terjadinya perbedaan aktivitas biokimiawi. Struktur dasarnya adalah molekul siklopentanolperhidrofenantren, molekul ini terdiri dari 3 buah cicin dari 6 atom karbon dan sebuah cicin dari 5 atom karbon. Cincin dasar ini ditandai dengan huruf A, B, C, dan D, sedangkan atom karbon diberi angka (gambar 1).
Hormon steroid seks dibagi menjadi 3 kelompok utama berdasarkan jumlah atom karbon yang dimiliki (gambar 2).
1.      Seri karbon 21, struktur dasarnya adalah nucleus pregnane, termasuk disini kortikoid dan progestin
2.      Seri karbon 19, struktur dasarnya adalah nukleus androstane termasuk disini hormon androgen
3. Seri karbon 18, struktur dasarnya adalah nukleus estrange termasuk disini hormon estrogen.
Gambar 2. Pembagian hormon steroid seks (dikutip dari Wibowo7)

Derivat estrange memiliki 3 bentuk yaitu estron, estradiol dan estriol (gambar 3).
Gambar 3. Tiga bentuk derivat estrange (dikutip dari Wibowo7)
Penamaan dari hormon streroid ini menggunakan jumlah atom karbon yang ada, nama dasarnya didahului dengan jumlah yang menunjukkan posisi dari ikatan rangkap, nama-nama tersebut menunjukkan posisi dari ikatan rangkap, nama-nama tersebut menunjukkan apakah terdapat 1, 2 atau 3 ikatan yaitu : - ene, dan –diene, -triene. Setelah nama dasar 4  diikuti dengan nama kelompok hidroksi yang ditunjukkan dengan jumlah rantai karbon yang terikat, 1, 2 atau 3 kelompok hidroksi yaitu : - ol, - diol, - triol. Kemudian group keton menyusul dipaling akhir dengan nama sesuai jumlah karbon yang terikat 1, 2 atau 3 yaitu : - one, - dione dan – trione, sebagai contoh diperlihatkan pada gambar (gambar 4).
Gambar 4. Penamaan hormon steroid ( dikutip dari Wibowo7 )







Tidak ada komentar:

Posting Komentar